4.7 Article

Evaluation of data driven models for river suspended sediment concentration modeling

期刊

JOURNAL OF HYDROLOGY
卷 535, 期 -, 页码 457-472

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2016.02.012

关键词

Hydrometric station; Heuristic models; Kernel function; SVR; ANN

向作者/读者索取更多资源

Using eight-year data series from hydrometric stations located in Arkansas, Delaware and Idaho (USA), the ability of artificial neural network (ANN) and support vector regression (SVR) models to forecast/estimate daily suspended sediment concentrations ([SS](d)) was evaluated and compared to that of traditional multiple linear regression (MLR) and sediment rating curve (SRC) models. Three different ANN model algorithms were tested [gradient descent, conjugate gradient and Broyden-Fletcher-Goldfarb-Shanno (BFGS)], along with four different SVR model kernels [linear, polynomial, sigmoid and Radial Basis Function (RBF)]. The reliability of the applied models was evaluated based on the statistical performance criteria of root mean square error (RMSE), Pearson's correlation coefficient (PCC) and Nash-Sutcliffe model efficiency coefficient (NSE). Based on RMSE values, and averaged across the three hydrometric stations, the ANN and SVR models showed, respectively, 23% and 18% improvements in forecasting and 18% and 15% improvements in estimation over traditional models. The use of the BFGS training algorithm for ANN, and the RBF kernel function for SVR models are recommended as useful options for simulating hydrological phenomena. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据