4.8 Article

Metabolomics strategy comprehensively unveils the effect of catechins intervention on the biomarkers of exposure to acrylamide and biomarkers of cardiometabolic risk

期刊

ENVIRONMENT INTERNATIONAL
卷 169, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2022.107517

关键词

Acrylamide; Catechins; Cardiometabolic risk; Metabolomics; Phenylalanine metabolism

资金

  1. National Natural Science Foundation of China
  2. [21976156]
  3. [21277123]

向作者/读者索取更多资源

Polyphenolic antioxidants, such as catechins, have been shown to protect against the toxicity of acrylamide by altering biomarkers and metabolome. Supplementation with catechins promoted the excretion of N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine and attenuated the ratio of glycidamide to acrylamide in blood. Metabolomics analysis revealed regulation of metabolites related to glycolipid metabolism and energy metabolism. Catechins may be a therapeutic ingredient for preventing acrylamide-induced cardiometabolic toxicity.
Polyphenolic antioxidants have been suggested to control the generation of acrylamide during thermal reactions. However, their role in protecting against the toxicity of acrylamide and the mechanism of action regarding profile alteration of biomarkers and metabolome remains unclear. A total of 65 adults were randomized into tea polyphenols (TP) and control groups and served with potato chips, which corresponded to an intake level of 12.6 mu g/kg.bw of acrylamide, followed by capsules containing 200 mg, 100 mg or 50 mg TP, or equivalent placebo. Moreover, nontargeted urinary metabolomics analysis in acrylamide exposed rats was conducted using ultra-high performance liquid chromatography linked with a quadrupole-orbitrap high-resolution mass spectrometry. Our results showed that supplementation with catechins promoted the excretion of N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine in both humans and rats. We also found that epigallocatechin gallate (EGCG) or epicatechin (EC) intervention attenuated the ratio of hemoglobin adduct of glycidamide to hemoglobin adduct of acrylamide in rat blood. Metabolomics analysis revealed that EGCG/EC intervention regulated the differential expressed metabolites, including L-glutamic acid, 2-oxoglutarate, citric acid, and cysteinylglycine. Kyoto Encyclopedia of Genes and Genomes pathway analysis further showed acrylamide-induced metabolic disorders were improved after EGCG/EC supplementation by glycolipid metabolism (alanine, aspartate and glutamate metabolism, and D-Glutamine and D-glutamate metabolism) and energy metabolism (tricarboxylic acid cycle). Notably, the supplement use of EGCG prevented the cardiometabolic risk after exposure to acrylamide by mediating the phenylalanine and hippuric acid in phenylalanine metabolism. Here we showed the beneficial effect of catechins as major polyphenolic antioxidant ingredients on the toxicity of acrylamide by the changes in biomarkers from metabolic profile analysis based on human and animal studies. These findings shed light into the catechins as natural polyphenolic antioxidants that could be a therapeutic ingredient for preventing acrylamide-induced cardiometabolic toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据