4.6 Article

Four-Objective Optimization of an Irreversible Magnetohydrodynamic Cycle

期刊

ENTROPY
卷 24, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/e24101470

关键词

finite time thermodynamics; NSGA-II algorithm; irreversible MHD cycle; multi-objective optimization; deviation index; performance comparison

资金

  1. National Natural Science Foundation of China [52171317, 51779262]

向作者/读者索取更多资源

This paper utilizes finite time thermodynamic theory and multi-objective genetic algorithm to optimize the irreversible magnetohydrodynamic cycle based on different objective function combinations. The results show that the multi-objective optimization result is preferable to any single-objective optimization result.
Based on the existing model of an irreversible magnetohydrodynamic cycle, this paper uses finite time thermodynamic theory and multi-objective genetic algorithm (NSGA-II), introduces heat exchanger thermal conductance distribution and isentropic temperature ratio of working fluid as optimization variables, and takes power output, efficiency, ecological function, and power density as objective functions to carry out multi-objective optimization with different objective function combinations, and contrast optimization results with three decision-making approaches of LINMAP, TOPSIS, and Shannon Entropy. The results indicate that in the condition of constant gas velocity, deviation indexes are 0.1764 acquired by LINMAP and TOPSIS approaches when four-objective optimization is performed, which is less than that (0.1940) of the Shannon Entropy approach and those (0.3560, 0.7693, 0.2599, 0.1940) for four single-objective optimizations of maximum power output, efficiency, ecological function, and power density, respectively. In the condition of constant Mach number, deviation indexes are 0.1767 acquired by LINMAP and TOPSIS when four-objective optimization is performed, which is less than that (0.1950) of the Shannon Entropy approach and those (0.3600, 0.7630, 0.2637, 0.1949) for four single-objective optimizations, respectively. This indicates that the multi-objective optimization result is preferable to any single-objective optimization result.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据