4.7 Article

Simulations of crack development in brittle materials under dynamic loading using the numerical manifold method

期刊

ENGINEERING FRACTURE MECHANICS
卷 275, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2022.108830

关键词

Crack initiation; Crack propagation; Crack coalescence; Dynamic loading; Numerical manifold method (NMM)

资金

  1. Natural Science Foundation of Sichuan Province (Sichuan Province Science and Technology Support Program) , China
  2. [2022NSFSC0263]

向作者/读者索取更多资源

This research focuses on the use of the numerical manifold method (NMM) to simulate the crack initiation, propagation, and coalescence in brittle materials under dynamic loading. The results show that the NMM is able to accurately reproduce the crack behavior in these materials.
Crack development in brittle materials under dynamic loading is widely involved in engineering, in which crack initiation, propagation and coalescence are typical phenomena. The numerical manifold method (NMM) is a unified continuous-discontinuous numerical method employing two cover systems, namely, mathematical covers and physical covers, which encounters no difficulty in the numerical representation of continua and complex discontinuities within one framework. In the present work, NMM is developed for the simulation of crack initiation, propagation and coalescence problems in brittle materials under dynamic loading based on the tensile strength criterion and the Mohr-Coulomb strength criterion for tensile and shear cracking, respectively. Four typical examples including the splitting of a rock bar, the Kalthoff-Winkler experiment, the cracking in tensile loaded pre-notched rectangular plates and the double-hole blasting of rect-angular plates are simulated. The numerically derived crack development results are compared with corresponding theoretical or experimental results. The mesh size sensitivity is discussed for the first two examples; the dynamic cracking mechanism in the rock bar example is investigated along with the stress wave propagation analysis; the influence of the initial crack and hole lo-cations on the crack path in the tensile loaded pre-notched example as well as the effect of the guiding notch in the double-hole blasting example are studied. Results indicate that the crack initiation, propagation and coalescence in brittle materials under dynamic loading are quite satisfactorily reproduced by NMM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据