4.7 Article

Machine learning-based failure mode identification of double shear bolted connections in structural steel

期刊

ENGINEERING FAILURE ANALYSIS
卷 139, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfailanal.2022.106471

关键词

Bolted connection; Classification; Failure mode; Steel; Machine learning

向作者/读者索取更多资源

This study focuses on the design of double shear bolted connections in structural steel. By utilizing machine learning techniques, the researchers were able to identify and classify the four different failure modes of these connections. A user interface was also developed to facilitate the identification of failure modes.
The design of double shear bolted connections in structural steel is governed by four different failure modes; tear out, splitting, net-section, and bearing. Ten machine learning (ML) approaches were explored on a comprehensive database of 455 experimental results for identifying the failure modes of double shear bolted connections. Among them, Random Forest (RF), CatBoost, XGBoost, and Gradient Boosting (GB) attained 90-92% accuracy on the testing dataset for classifying the failure modes. The best-performing models revealed that the ratio of the edge distance-to-bolt diameter (e2/d0) is the most important feature with an influence of nearly 30% on the failure mode of the connections. Interestingly, the number of bolt rows in a connection also influences the failure mode, which was not captured by existing equations and design codes. Finally, a user interface capturing all proposed ML models was developed to identify the failure modes of double shear bolted connections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据