4.7 Article

Human Hair-Derived Porous Activated Carbon as an Efficient Matrix for Conductive Polypyrrole for Hybrid Supercapacitors

期刊

ENERGY & FUELS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.energyfuels.2c01926

关键词

-

资金

  1. CSIR, India
  2. CSIR
  3. [HRDG/CSIR-Nehru PDF/EN]
  4. [PS/EMR-1/02/2019]

向作者/读者索取更多资源

The combination of activated carbon derived from human hair and conducting polymer (polypyrrole) as a composite material shows enhanced pseudocapacitance, higher specific capacitance, and improved cyclic stability for supercapacitor applications. An assembled asymmetrical supercapacitor device using the composite material exhibits a high energy density and power density in an aqueous electrolyte, avoiding the need for expensive and toxic organic electrolytes.
The electric double layer capacitor (EDLC) mechanism offered by carbon frameworks alone cannot suffice the unprecedented demand for energy. Hence, including a pseudocapacitive material (conducting polymer) in the carbon framework can impart additional pseudocapacitance to the material, thereby improving its electrochemical performance. Herein, human hair as a biowaste resource with inherent heteroatoms has been subjected to chemical activation at 800 degrees C to yield human hair-derived activated carbon (HHAC). Sub-sequently, an in situ chemical oxidation technique has been employed to generate the composite of HHAC and polypyrrole (HHAC/PPy). The HHAC/PPy composite when tested in 1 M H2SO4 outperforms pristine HHAC and PPy, with a higher specific capacitance of 358 F/g compared to 274 and 53 F/g obtained for individual materials, respectively (at 0.5 A/g). Moreover, the HHAC/PPy composite also solved the problem of low cyclic stability in the conducting polymers by maintaining 84.2% of the initial capacitance after 5000 charge-discharge cycles. In addition, a HHAC/PPy//HHAC asymmetrical supercapacitor device was assembled in an aqueous electrolyte (1 M H2SO4), which delivered an ultrahigh energy density of 53.3 W h/kg with a respectable power density of 408.5 W h/kg that can help in avoiding costly and toxic organic electrolytes. Our study achieved an electroactive carbon material with the synergy of both EDLC and pseudocapacitance materials, which has great potential for supercapacitor applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据