4.7 Article

An examination of super dry working fluids used in regenerative organic Rankine cycles

期刊

ENERGY
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.125931

关键词

Super dry fluid; Regenerative organic Rankine cycle; Heat source type; Extraction pressure; Extraction temperature

向作者/读者索取更多资源

This paper examines the use of super dry working fluids in regenerative ORC and determines the optimal extraction pressure and temperature for each fluid based on different heat sources. The results indicate that heptane is the best match for closed heat sources, while pentane, hexane, propylcyclohexane, undecane, and o-xylene are suitable for different open heat sources.
Thermodynamic and economic performance of an Organic Rankine Cycle (ORC) system is closely related to the thermophysical properties of its organic working fluid. Super dry working fluids are especially suitable for regenerative ORC. Setting a recuperator in an ORC not only improves its thermodynamic performance, but also increases the investment cost of heat exchanger that accounts for the highest proportion in the whole ORC system. Based on the above consideration, this paper presents an examination of super dry working fluids used in regenerative ORC. The suitable super dry working fluid used in a regenerative ORC is determined and selected for common medium/low-temperature heat sources. Based on different types of heat sources, the optimal single-stage extraction pressure and extraction temperature of each super dry working fluid in regenerative ORC is determined according to the net power output and thermal efficiency of regenerative ORC, respectively. The results show that heptane may match the closed heat source best with an optimal extraction condition at 0.45 MPa and 478.64 K. While pentane, hexane, propylcyclohexane, undecane and o-xylene may match five different open heat sources. Their corresponding optimal extraction conditions are 0.85 MPa/408.78 K, 0.6 MPa/445.33 K, 0.35 MPa/570.22 K, 0.175 MPa/584.25 K and 0.4 MPa/544.32 K.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据