4.7 Article

Performance analysis of a micro-scale integrated hydrogen production system by analytical approach, machine learning, and response surface methodology

期刊

ENERGY
卷 255, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.124553

关键词

Hydrogen production; Integrated system; Analytical approach; Machine learning; Response surface methodology

资金

  1. Fer-dowsi University of Mashhad [FUM-43847]

向作者/读者索取更多资源

This study presents an innovative combined approach, including machine learning for data generation, analytical techniques, and response surface methodology, to investigate micro-scale integrated hydrogen production systems. The study examines the effects of operational parameters on system performance and provides guidelines for initial design and optimized design suggestions.
Parametric study of micro-scale integrated hydrogen production systems requires great computational efforts due to complex phenomena such as reaction kinetics. In the present study, an innovative combined approach, including machine learning for data generation (pre-processing), analytical techniques (processing), and response surface methodology (post-processing) is developed to investigate an integrated hydrogen production system. In the pre-processing step, appropriate correlations are provided for the species' net rate, mixture properties, and the heat of reactions considering the detailed reaction mechanism of methane steam reforming and combustion, using the decision tree algorithm. A 2D steady-state model for heat and mass transfer is employed to analytically solve the conservation equations in a thermally coupled micro-combustor and catalytic micro-reformer. The post-processing step investigates the effects of seven main operational parameters on CH4 conversion, system efficiency, and quenching distance. It is found that the wall thickness is the most influential parameter in CH4 conversion and system efficiency. Also, the combustor height is the most critical parameter to sustain combustion in the integrated system. The achievements can be employed as guidelines for the initial design of an integrated hydrogen production system. Finally, five optimized designs of the integrated system are suggested for the first time to construct experimental prototypes. (c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据