4.7 Article

A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC

期刊

ENERGY
卷 258, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.124726

关键词

PEM fuel Cell; CFD modeling; Water management; Pressure drop; Performance

向作者/读者索取更多资源

The flow field design is a crucial factor that directly affects the performance of proton exchange membrane (PEM) fuel cells. A novel design inspired by serpentine and parallel topologies has been proposed to increase mass transfer, water management, and cell performance. The results showed that the novel design exhibited more uniform pressure and velocity distributions and improved electrochemical reaction rate, current density, and cell efficiency.
The flow field design is one of the crucial factors that directly affects on the proton exchange membrane (PEM) fuel cell performance. To increase mass transfer, water management, and cell performance, a novel design inspired by serpentine and parallel topologies is proposed. The principal criteria of this design are focused on pressure drop reduction and a more uniform distribution of the reactants via the flow fields. To achieve these objectives, 3D PEMFC models are analyzed using the computational fluid dynamic (CFD) technique for the novel (called V-Ribbed) and common flow fields. The results showed that the pressure and the velocity distributions are more uniform in the V-Ribbed design compared with the other cases. More oxygen penetration at the cathode electrode surface is seen when liquid water within V-Ribbed channels is reduced. This causes to improve the electro chemical reaction rate, current density, and cell efficiency. It is found that using V-Ribbed channels increased the average current flux density on the cathode side about 41.5% and 21.88% compared to serpentine and parallel channels, respectively. Furthermore, the results of the polarization curve showed an enhancement of 2.19% and 2.5% in V-Ribbed design compared to serpentine and parallel channels, respectively.(c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据