4.7 Article

Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas

期刊

ENERGY
卷 254, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.124210

关键词

RDF co-gasification; Hierarchical clustering analysis (HCA); SEM-EDS; FTIR

资金

  1. Ministry of Science and Higher Education, Poland [11161011]

向作者/读者索取更多资源

The paper explores the application of the gasification technology of refuse-derived fuels (RDF) with bituminous coal in hydrogen production and circular economy development. The research findings indicate that an increase in the proportion of RDF in the fuel blend leads to a decrease in the total gas yield and hydrogen yield. RDF2, with a higher calcium concentration, exhibits a higher H2 yield during co-gasification with coal.
The gasification technology of refuse-derived fuels (RDF) can represent a future alternative to the global hydrogen production and a pathway for the development of the circular economy. The paper presents an innovative way of utilizing RDF through their oxygen/steam co-gasification with bituminous coal to hydrogen rich gas. Five different RDF samples (RDF1 divided by RDF5) were investigated. The in-depth analyses of the co-gasification of bituminous coal blends with different amounts of RDF (10, 15 and 20%w/w) under various temperature conditions were conducted with the application of Hierarchical Clustering Analysis (HCA). The results of the research study revealed a decrease in the total gas yield as well as in the hydrogen yield observed with the increase in the RDF fraction in the fuel blend. The lowest hydrogen yield and the highest carbon conversion were noted for the co-gasification tests of coal blends with 20% w/w for all the studied RDFs. The SEM-EDS (Scanning Electron Microscopy with Energy Dispersive Spectroscopy) and WDXRF (Wavelength Dispersive X-ray Fluorescence) results showed a significantly higher H2 yield in RDF2 co-gasification with coal in comparison with all the remaining RDFs, due to the higher concentration of calcium in the sample. The molecular structure analysis of polymers using Fourier transform infrared spectroscopy (FTIR) demonstrated that the most prevalent synthetic polymers in RDF2 are polyethylene terephthalate and polyvinyl chloride characterized by the lowest thermal stability compared to polyethylene and polypropylene. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据