4.7 Article

A multi-objective optimization model for EVSE deployment at workplaces with smart charging strategies and scheduling policies

期刊

ENERGY
卷 254, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.124161

关键词

DCFC; Demand charge; EVSE; Multi-objective optimization; Plug-in electric vehicles; Workplace charging

向作者/读者索取更多资源

This study proposes a multi-objective optimization model to determine the optimal charging infrastructure for a transition to plug-in electric vehicles (PEVs) at workplaces. The model considers all cost aspects of a workplace charging station and incorporates smart charging strategies and a charging behavior model. Through testing and sensitivity analysis, it is shown that the proposed model can achieve significant cost savings compared to single-objective optimal models and current charging practices.
This study proposes a multi-objective optimization model to determine the optimal charging infrastructure for a transition to plug-in electric vehicles (PEVs) at workplaces. The developed model considers all cost aspects of a workplace charging station, i.e., daily levelized electric vehicle supply equipment (EVSE) infrastructure cost, PEV energy and demand charges. These single-objective functions are aggregated in a multi-objective optimization framework to find the Pareto optimal solutions. Smart charging strategies with interrupted and uninterrupted power profiles are proposed to maximize the use of EVSE units. The charging behavior model is developed based on collected workplace charging data. The model is tested with various scheduling policies to investigate their impact on the behaviors of EVSE types from different perspectives. Finally, a sensitivity analysis is performed to assess the impacts of battery sizes and onboard charger ratings on cost behavior. It is shown that the proposed model can achieve up to 7.8% and 14.6% cost savings as compared to single-objective optimal models and the current charging practice, respectively. The unit cost is found to be more sensitive to scheduling policies than the charging strategies. It is also found that the flexibility ratio policy gives the best PEV scheduling with the lowest unit cost and the most efficient use of the grid assets.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据