4.7 Article

An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation

期刊

ENERGY
卷 254, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2022.124224

关键词

Whole-life-cycle state of charge; Lithium-ion battery; Capacity fading; Feedforward-long short-term memory; Sliding balance window; Steady-state screening model

资金

  1. National Natural Science Foundation of China [62173281, 61801407]
  2. Sichuan Science and Technology Program [2019YFG0427]
  3. China Scholarship Council [201908515099]
  4. Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province [18kftk03]

向作者/读者索取更多资源

In this paper, an improved feedforward-long short-term memory (FF-LSTM) modeling method is proposed for accurate whole-life-cycle state of charge (SOC) prediction of lithium-ion batteries. The method effectively considers the variations in current, voltage, and temperature. Experimental tests show that the battery capacity reduces significantly over time.
The whole-life-cycle state of charge (SOC) prediction plays a significant role in various applications of lithium-ion batteries, but with great difficulties due to their internal capacity, working temperature, and current-rate variations. In this paper, an improved feedforward-long short-term memory (FF-LSTM) modeling method is proposed to realize an accurate whole-life-cycle SOC prediction by effectively considering the current, voltage, and temperature variations. An optimized sliding balance window is constructed for the measured current filtering to establish a new three-dimensional vector as the input matrix for the filtered current and voltage. Then, an improved steady-state screening model is constructed for the predicted SOC redundancy reduction that is obtained by the Ampere-hour integral method and taken as a one-dimensional output vector. The long-term charging capacity decay tests are conducted on two batteries, C7 and C8. The results show that the battery charging capacity reduces significantly with increasing time, and the capacity decreases by 21.30% and 22.61%, respectively, after 200 cycles. The maximum whole-life-cycle SOC prediction error is 3.53% with RMSE, MAE, and MAPE values of 3.451%, 2.541%, and 0.074%, respectively, under the complex DST working condition. The improved FF-LSTM modeling method provides an effective reference for the whole-life-cycle SOC prediction in battery system applications. (c) 2022 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据