4.5 Article

Comparing impacts of parameter and spatial data uncertainty for a grid-based distributed watershed model

期刊

JOURNAL OF HYDROINFORMATICS
卷 18, 期 6, 页码 961-974

出版社

IWA PUBLISHING
DOI: 10.2166/hydro.2016.003

关键词

distributed model; HYSTAR; parameter uncertainty; sequential Gaussian simulation; sequential indicator simulation; spatial data

向作者/读者索取更多资源

Parameter uncertainty in hydrologic modeling is commonly evaluated, but assessing the impact of spatial input data uncertainty in spatially descriptive 'distributed' models is not common. This study compares the significance of uncertainty in spatial input data and model parameters on the output uncertainty of a distributed hydrology and sediment transport model, HYdrology Simulation using Time-ARea method (HYSTAR). The Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm was used to quantify parameter uncertainty of the model. Errors in elevation and land cover layers were simulated using the Sequential Gaussian/Indicator Simulation (SGS/SIS) techniques and then incorporated into the model to evaluate their impact on the outputs relative to those of the parameter uncertainty. This study demonstrated that parameter uncertainty had a greater impact on model output than did errors in the spatial input data. In addition, errors in elevation data had a greater impact on model output than did errors in land cover data. Thus, for the HYSTAR distributed hydrologic model, accuracy and reliability can be improved more effectively by refining parameters rather than further improving the accuracy of spatial input data and by emphasizing the topographic data over the land cover data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据