4.7 Article

Histology study and transcriptome analysis of the testis of Loach(Misgurnus anguillicaudatus) in response to phenanthrene exposure

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2022.113950

关键词

Reproductive toxicity; Testicular development; Microstructure; DEGs

资金

  1. Basic Research Program of Natural Science in Shaanxi [2021JM-417]

向作者/读者索取更多资源

This study investigated the mechanism of loach testis response to phenanthrene (PHE) and obtained a large amount of gene expression information related to metabolism, spermatogenesis, and immunity genes from RNA-seq.
Phenanthrene (PHE) is one of the most abundant polycyclic aromatic hydrocarbon compounds (PAHs) in the aquatic environment. The loaches were exposed at concentrations of 0.30?1.00?3.00 mg L-1 for 60 days. The effects of PHE on the testis development were evaluated by calculating the survival rate, observing the structure of testis and analyzing transcriptome. Firstly, PHE markedly decreased the survival rate in a dose-dependent manner. Then, the number and density of spermatogonia, primary spermatocytes, secondary spermatocytes and spermatids were substantially reduced under PHE exposure. The space in the seminiferous tubule obviously increased in the high PHE concentration group. Meanwhile, transcriptome comparative analysis identified 5329 differentially expressed genes (DEGs) including 2928 up-regulated and 2401 down-regulated in the testis of loach exposed PHE for 60 days. Meiotic cell cycle, arganelle fission, ATPase activity and adenylate nucleotide binding were significantly differences by GO (Gene Ontology) enrichment. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis revealed that TNF (Tumor Necrosis Factor) signaling pathway, CAMs (Cell Adhesion Molecules), cytochrome P450 and lipid metabolism were markedly regulated. In addition, eight DEGs were randomly selected from the testis transcriptomics results for qPCR verification, the results were consistent with RNA-Seq. Finally, related genes (piwil2, dmc1, vasa, ubr2, dnd, rnf17, plcb2, c-fos, gpx4) of testis development were further confirmed and they were differentially regulated after PHE exposure. In summary, a survey of the mechanism of loach testis response to PHE was performed, and a large number of gene expression levels regarding metabolism, spermatogenesis and immunity genes were acquired from RNA-seq. This study provide informations for elucidating the molecular mechanism of PHE affected the testis development of loach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据