4.7 Article

Soil total and organic carbon mapping and uncertainty analysis using machine learning techniques

期刊

ECOLOGICAL INDICATORS
卷 143, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecolind.2022.109420

关键词

Digital soil mapping; Random forest plus residuals kriging (RFRK); Environmental covariates; Variability; Uncertainty

向作者/读者索取更多资源

This study used machine learning models to predict the spatial distribution of soil organic carbon (SOC) and soil total carbon content (STC), and quantified the contribution of environmental factors to the variability of SOC and STC. The results showed that the Random Forest plus residuals Kriging (RFRK) model performed best in prediction and uncertainty estimation, while the eXtreme Gradient Boosting (XGBoost) model performed well in uncertainty estimation. Land use types, mean annual Normalized Difference Vegetation Index, and elevation were identified as the top three important indicators in determining the spatial variability of SOC and STC.
Soil carbon is the largest terrestrial carbon pool. Reliable mapping of soil organic carbon (SOC) and soil total carbon content (STC) is essential for agricultural ecosystem management and carbon accounting under global warming conditions. This study was conducted at a fine scale and aimed to perform spatial distribution pre-diction and uncertainty mapping of SOC and STC and quantify the contribution of environmental variables affecting the variability of SOC and STC. Three machine learning models, namely, Random Forest (RF), eXtreme Gradient Boosting (XGBoost), and Random Forest plus residuals Kriging (RFRK), were developed using 4345 agricultural topsoil samples and 16 environmental covariates. Mean absolute error (MAE), root mean square error (RMSE), Nash-Sutcliffe model efficiency coefficient (NSE), and Lin's concordance correlation coefficient (LCCC) were used to evaluate the prediction global accuracy. Accuracy plot was used to quantify the uncertainty (i.e. local accuracy) of SOC and STC predictions. RFRK performed best with MAE, RMSE, NSE, and LCCC of 20.76%, 27.61%, 0.39, and 0.56 for SOC and 27.20%, 38.59%, 0.35, and 0.53 for STC, respectively. RF out-performed XGBoost in terms of NSE (0.33 vs 0.29 for SOC and 0.36 vs 0.32 for STC). Accuracy plots showed that RFRK produced higher local accuracy than RF both in quantifying the prediction uncertainty of SOC and STC. XGBoost performed excellently in the uncertainty estimation of SOC. Land use types, mean annual Normalized Difference Vegetation Index, and elevation were the top three important indicators in determining the spatial variability of SOC and STC. These results could provide inspiration and support for monitoring soil carbon in complex terrain areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据