4.6 Review

Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review

期刊

ECOLOGICAL ENGINEERING
卷 183, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.ecoleng.2022.106740

关键词

Acid rock drainage (ARD) or acid and metalliferous drainage; water/wastewater contamination and pollution; water scarcity; drinking water reclamation; minerals and resource recovery

资金

  1. University of Witwatersrand (WITS)
  2. Council for Scientific and Industrial research (CSIR)
  3. University of South Africa (UNISA)
  4. Magalies Water (MW)

向作者/读者索取更多资源

Mining activities can lead to acid mine drainage, causing environmental impacts. While there are technological solutions, challenges such as high cost and mineral contamination remain.
Mining activities are notorious for their environmental impact, with acid mine drainage (AMD) being among the most significant issues. Specifically, AMD has recently been a topical issue of prime concern, primarily due to the magnitude of its environmental, ecotoxicological, and socioeconomic impacts. AMD originates from both active and abandoned mines (primarily gold and coal) and is encountered in Canada, China, Russia, South Africa, USA, and other countries with strong mining industry. Owing to its acidity, AMD contains elevated levels of dissolved (toxic) metals, metalloids, rare-earth elements, radionuclides, and sulfates. Practical and cost-effective solutions to prevent its formation are still pending, while for its treatment active (driven by frequent input of chemicals and energy) or passive (based on oxidation/reduction) technologies are typically employed with the first being more efficient in contaminants removal, however, at the expense of process complexity, cost, and materials and energy consumption. More recently, and under the circular economy concept, hybrid (combination of active and passive technologies) and particularly integrated (sequential or stepwise treatment) systems have been explored for AMD beneficiation and valorisation. These systems are costly to install and operate but are cleaner production systems since they can effectively prevent pollution and can be used for closed-loop and sustainable AMD management (e.g., zero liquid discharge (ZLD) systems). Herein, the body of knowledge on AMD treatment, beneficiation (metals/minerals recovery), valorisation (water reclamation), and life cycle assessment (LCA) is comprehensively reviewed and discussed, with focus placed on circular economy. Future research directions to introduce reuse, recycle, and resource recovery paradigms in wastewater treatment and to inspire innovation in valorising this toxic and hazardous effluent are also provided. Overall, AMD beneficiation and valorisation appears promising since the reclaimed water and the recovered minerals/metals could offset treatment costs and environmental impacts. However, the main challenges include high-cost, complexity, co-contamination in the recovered minerals, and the generation of a higly heterogeneous and mineralised sludge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据