4.5 Article

Morphology, flow dynamics and evolution of englacial conduits in cold ice

期刊

EARTH SURFACE PROCESSES AND LANDFORMS
卷 48, 期 2, 页码 415-432

出版社

WILEY
DOI: 10.1002/esp.5494

关键词

Arctic; Austre Broggerbreen; englacial drainage; morphology; terrestrial laser scanning

向作者/读者索取更多资源

Meltwater routing through ice masses plays a fundamental role in regulating glacier dynamics, mass balance, and proglacial hydrology. However, direct observations of englacial channels and their flow conditions remain limited. In this study, terrestrial laser scanning (TLS) surveys were conducted on the main englacial channel of cold-based Austre Broggerbreen in Svalbard. The results reveal spatial variations in water flow conditions, channel incision mechanisms, and the presence of different hydrological conditions.
Meltwater routing through ice masses exerts a fundamental control over glacier dynamics and mass balance, and proglacial hydrology. However, despite recent advances in mapping drainage systems in cold, Arctic glaciers, direct observations of englacial channels and their flow conditions remain sparse. Here, using terrestrial laser scanning (TLS) surveys of the main englacial channel of cold-based Austre Broggerbreen (Svalbard), we map and compare an entrance moulin reach (122 m long) and exit portal reach (273 m long). Analysis of channel planforms, longitudinal profiles, cross-sections and morphological features reveals evidence of spatial variations in water flow conditions and channel incision mechanisms, and the presence of vadose, epiphreatic and phreatic conditions. The entrance reach, located at the base of a perennial moulin, was characterized by vadose, uniform, channel lowering at annual timescales, evidenced by longitudinal grooves, whereas the exit portal reach showed both epiphreatic and vadose conditions, along with upstream knickpoint migration at intra-annual timescales. Fine-scale features, including grooves and scallops, were readily quantified from the TLS point cloud, highlighting the capacity of the technique to inform palaeoflow conditions, and reveal how pulses of meltwater from rainfall events may adjust englacial conduit behaviour. With forecasts of increasing Arctic precipitation in the coming decades, and a progressively greater proportion of glaciers comprising cold ice, augmenting the current knowledge of englacial channel morphology is essential to constrain future glacier hydrological system change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据