4.6 Article

DOA and polarization estimation for compressed EMVS array with arbitrary sensor geometry

期刊

DIGITAL SIGNAL PROCESSING
卷 131, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.dsp.2022.103778

关键词

Electromagneticvector sensor; Direction of arrival; Array signal processing; Parameter estimation; Compressive measurement

向作者/读者索取更多资源

Electromagnetic vector sensors (EMVS) are widely used in array signal processing due to their polarization diversity advantages, but they come with a large hardware cost and computational complexity. To address this, we propose a novel compression framework that reduces hardware cost while achieving high performance. By using a sparse network of analog phase shifters and a two-step multi-parameter estimation algorithm, we are able to obtain high-accuracy estimates with reduced front-end chains and low computational complexity.
Electromagnetic vector sensors (EMVS) are widely used in array signal processing because of their advantages in polarization diversity, which enables the estimation of the received polarization angle (RPA) in addition to the direction of arrival (DOA). However, these benefits are accompanied by a huge burden on hardware cost and computational complexity. Specifically, compared to scalar arrays, EMVS array signal processing requires more complex hardware devices, for instance, a larger number of front-end chains and higher computational complexity for multidimensional parameter estimation algorithms. We propose a novel compression framework to reduce the hardware cost while achieving high performance. Unlike the existing ones in the literature, the proposed compression network is a sparse network consisting of analog phase shifters; In addition, the proposed compression framework only works on spatial information except for polarization information; Further, for such a compressed EMVS array, we propose a two-step multi-parameter estimation algorithm. In detail, we firstly propose a compressed ESPRIT-like method to estimate the 2D-DOA coarsely. Then, we adopt a small-scale 2D search in the vicinity of the coarse estimate to obtain a high-accuracy estimate of 2D-DOA. After that, we obtain a high-accuracy estimate of 2D-RPA in a closed-form. Furthermore, to avoid any possible performance deterioration of the proposed estimators due to the randomly selected compression weights (a.k.a. compression matrix) from Gaussian distribution (as in literature) and thus cause loss of information, we propose an optimization algorithm to find the optimal solution for the compression matrix under the maximum signal-to-noise ratio (SNR) principle. In this way, we convert the intractable sparse complex matrix optimization problem into a quadratically constrained quadratic programming (QCQP); Then, we employ the semidefinite relaxation technique (SDR) to find the optimal compression matrix. Numerical simulations illustrate that the proposed algorithms could obtain high-accuracy multi-parameter estimates with reduced front-end chains and low computational complexity. (c) 2022 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据