4.7 Review

Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review

期刊

DESALINATION
卷 538, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.desal.2022.115827

关键词

Desalination; Hypersaline brines; Zero liquid discharge; Emerging technologies; Fit-for-purpose water reuse; Energy consumption; Scaling

资金

  1. National Science Foundation
  2. Research Initiatives in Science and Engineering (RISE) program of Columbia University
  3. SEAS Interdisciplinary Research Seed (SIRS) program of Columbia University

向作者/读者索取更多资源

This review examines the treatment of hypersaline brines, including the sources and driving factors of high-salinity desalination. It evaluates the prospects and challenges of various alternative technologies and emphasizes the importance of a range of different techniques to meet the diverse needs of the high-salinity desalination market.
Hypersaline brines are of growing environmental concern. While high-salinity desalination and zero liquid discharge (ZLD) are increasingly attractive treatment options, the high salt and scalant contents pose considerable technical difficulties to existing desalination techniques. In this review, we introduce sources of hyper saline brines, examine factors driving high-salinity desalination, and present the thermodynamic minimum energy of hypersaline desalination and ZLD, highlighting effects of mineral precipitation and imperfect salt rejection. We then critically examine prospects and challenges of 10 alternative technologies for hypersaline desalination: electrodialysis, osmotically-mediated reverse osmosis, forward osmosis, membrane distillation, humidification-dehumidification, solvent extraction desalination, supercritical water desalination, freeze desalination, clathrate hydrate desalination, and solar thermal desalination. Although electrodialysis and osmotically-mediated reverse osmosis show promise of having competitive energy efficiencies, these membrane based techniques are still constrained by concentrate salinity limits. Recovery and reuse of heat will be vital for competitiveness of thermally-driven approaches. Technologies that intrinsically precipitate salts in bulk solution, namely solvent extraction desalination, supercritical water desalination, and humidification-dehumidification, can advantageously avoid mineral scaling. Due to the highly heterogeneous nature of hypersaline streams and the wide array of end-use goals, the high-salinity desalination market will ultimately be best served by a range of different technologies with distinctive capabilities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据