4.7 Article

Explainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columns

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 356, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2022.129227

关键词

Explainable machine learning; Artificial intelligence (AI); Composite column; Compressive capacity; Resistance factor

向作者/读者索取更多资源

In this paper, machine learning models were developed to predict the axial compression capacity of rectangular CFST columns. It was found that LightGBM and CatBoost models performed better compared to existing design codes in predicting the capacity of CFST columns. Feature importance analyses and SHapley Additive explanations (SHAP) were used to explain the model performances and make the developed models interpretable.
Concrete-filled steel tubular (CFST) columns have been popular in the construction industry due to enhanced mechanical properties such as higher strength and ductility, higher seismic resistance, and aesthetics. Extensive experimental, numerical and analytical studies have been conducted in the past few decades to assess the structural response of CFST columns under various loading conditions. However, there is still uncertainty in predicting the capacity of CFST columns, and most of the current codes are conservative. In this paper, data-driven machine learning (ML) models have been developed to predict the axial compression capacity of rectangular CFST columns. An extensive database of 719 experiments was collected from literature and is randomly used to train, test, and validate the ML models. Seven ML models, namely lasso regression, random forest, Adaptive Boosting (AdaBoost), Gradient Boosting Machine (GBM), Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and Categorical Gradient Boosting (CatBoost), are evaluated to predict the compression capacity of CFST stub columns under axial load. The performance of the different ML models in predicting the compressive strength of CFST columns is compared by different code equations prevalent in different parts of the world. It is found that LightGBM and CatBoost models performed better with an accuracy of 97.9% and 98.3%, respectively, compared to the existing design codes in predicting the capacity of CFST columns. Feature importance analyses and SHapley Additive explanations (SHAP) explain the ML model performances and make the developed models interpretable. Resistance factor is determined using the best performing ML model for compressive strength prediction of CFST stub columns following AISC 360-16 code provision.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据