4.7 Article

Enriched immersed boundary method (EIBM) for interface-coupled multi and to convective heat transfer

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2022.115667

关键词

Immersed boundary method; Finite element method; Variational multi-scale formulation; Manufacturing processes

资金

  1. U.S. Department of Energy
  2. New Frontiers Initiative of University of Illinois at Urbana-Champaign, United States of America
  3. [DE-EE0009447]

向作者/读者索取更多资源

This paper presents an enriched immersed boundary method (EIBM) to address the challenge of simultaneously maintaining accuracy of resolving boundary conditions and mesh flexibility in interface-coupled multi-physics problems. The method enhances the accuracy of the fluid-solid interface by enriching the degrees of freedom and resolves all the physical unknowns on the background mesh. The EIBM is evaluated through a set of examples and demonstrates its efficacy in conjugate heat transfer.
It is challenging to develop numerical methods that simultaneously maintain accuracy of resolving boundary conditions and mesh flexibility to handle the interface in interface-coupled multi-physics problems involving large property discontinuity. On the one hand, boundary-fitted methods possess high accuracy in capturing the interfacial phenomenon but involve complicated volumetric mesh generation, mesh-motion, and even re-meshing procedures. On the other hand, immersed boundary methods (IBM) provide mesh flexibility but sometimes suffer from inferior interface representations, leading to poor enforcement of boundary conditions. This paper presents an enriched immersed boundary method (EIBM) to overcome this challenge and demonstrates its efficacy in conjugate heat transfer, a representative example in interface-coupled multi-physics systems that have implications for many industrial processes. The core technique of the method is to enhance IBM's accuracy of the fluid-solid interface by enriching the degrees of freedom of the cut elements to enforce temperature and flux compatibilities and resolve all the physical unknowns on the background mesh to simplify the volumetric mesh generation. We implement the EIBM under the framework of a variational multiscale formulation for coupled Navier-Stokes and thermodynamics equations. The enriched DoFs enable better enforcement of temperature and flux compatibilities with large conductivity ratios across the fluid-solid interface. At the same time, the immersed nature of the proposed method still attains mesh flexibility. The EIBM's accuracy is thoroughly evaluated through a set of examples, ranging from benchmark problems with analytical solutions to real-world cooling processes of a moving metallic structure with complex geometry.(c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据