4.5 Article

Interactions between screw dislocation and twin boundary in high-entropy alloy: A molecular dynamic study

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 213, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2022.111626

关键词

High -entropy alloy; Molecular dynamics; Twin boundary; Interaction mechanism; Negative stacking fault energy; Lattice friction

资金

  1. National Natural Science Foundation of China [11872321, 11672251, 12192214]

向作者/读者索取更多资源

The interaction mechanisms between dislocations and twin boundaries in high-entropy alloys (HEAs) are studied, and differences between HEAs and pure Ni are observed, possibly related to the statistical fluctuation of chemical ordering.
The interaction between dislocations and twin boundaries plays an important role in the plastic deformation of high-entropy alloys (HEAs), in which deformation twinning mechanisms are highly active. However, research concerning the twinning-induced strengthening in HEAs is lacking, especially atomistic studies. Therefore, molecular dynamics (MD) simulations are performed to elucidate the interaction mechanisms between the screw dislocation and the coherent twin boundary in the CoNiCrFeMn HEA and pure Ni. Dislocation transmission across the twin boundary is observed as the only mode in the CoNiCrFeMn HEA and pure Ni. However, the Shockley partial dislocations cannot simultaneously constrict on the twin boundary in the CoNiCrFeMn HEA because of the nanoscale segment detrapping mechanism related to the statistical fluctuation of chemical ordering, different from that in pure Ni. To quantify the interaction mechanism, generalized stacking fault energies and lattice friction are considered for predicting the interaction mode in the CoNiCrFeMn HEA. A new material parameter that considers the negative stacking fault energy and large lattice friction stress is proposed for the CoNiCrFeMn HEA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据