4.7 Article

Enabling unidirectional thermal conduction of wood-supported phase change material for photo-to-thermal energy conversion and heat regulation

期刊

COMPOSITES PART B-ENGINEERING
卷 245, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2022.110231

关键词

Wood; Phase change material; Boron nitride; Solar energy conversion; Thermal energy storage; Layer-by-layer assembly

资金

  1. Canada Excellence Research Chair Program

向作者/读者索取更多资源

This study introduces a composite material that supports organic phase change materials (PCMs) and improves thermal conductivity through the modification of wood structure. The multicomponent system shows promising results in solar-to-thermal energy conversion and exhibits thermal durability and stability.
Phase change materials (PCMs) enable passive thermal management by minimizing energy waste. However, a limitation of organic PCMs is their low thermal conductivity, which leads to uneven phase transitions. Herein, we introduce a composite following a green and simple synthesis strategy that uses wood's fiber anisotropy and microporosity to support an organic PCM (polyethylene glycol, PEG). We first incorporate exfoliated boron nitride (BN) and polyethylenimine (PEI) in a layer-by-layer (LbL) assembly followed by capping with conductive polypyrrole. This modification of the wood framework endows non-leaking filling with PCM and simultaneous light absorption and thermal conduction. The loaded BN provides enhanced thermal conductivity, 4.4 and 26 times higher compared to neat PEG and delignified wood. As a result, the multicomponent system is effective for solar-to-thermal energy conversion with a latent heat of melting of up to -160J/g (-78% PEG encapsulation). Moreover, the modified wood composite shows thermal durability and stability for at least 50 heating and cooling cycles. Overall, we take advantage of unidirectional heat transport for light conversion and storage and demonstrate the operation principle using a proof-of-concept prototype system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据