4.6 Article

Toxic effects of polyethylene microplastics on transcriptional changes, biochemical response, and oxidative stress in common carp (Cyprinus carpio)

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpc.2022.109423

关键词

Microplastic; Common carp; Biochemical homeostasis; Oxidative bio-indicator; Detoxification gene

资金

  1. Islamic Azad University, Marvdasht Branch, Iran

向作者/读者索取更多资源

This study evaluated the toxicity of microplastics on Cyprinus carpio. The results showed that exposure to microplastics disrupted the biochemical homeostasis, induced oxidative stress, and altered gene expression involved in detoxification in the fish.
Aquatic ecosystems have become a place for accumulating microplastics (MPs). MPs can directly or indirectly damage organisms. Although studies of the toxicity of MPs, there are insufficient literature reports on the effects of MPs on freshwater aquatic life. Therefore, this study aimed to evaluate the effect of MPs toxicity on Cyprinus carpio. In this study, biochemical parameters, oxidative biomarkers, and gene expression were assayed in fish exposed to 0, 175, 350, 700, and 1400 mu g L-1 of MPs for 30 days. MPs were detected in the liver and intestine of fish using FTIR-analysis. Mt1, Ces2, and P450 mRNA expression were enhanced in the hepatocytes of fish exposed to MPs, while Mt2 gene expression was significantly decreased. After exposure to MPs, MDA and carbonyl protein levels were higher than those of the reference group. The antioxidant capacity and glycogen contents in the hepatocytes significantly declined. MPs significantly inhibited glutathione reductase (GR), glucose 6-phosphate dehydrogenase (G6PDH), and catalase (CAT) activities. However, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities increased. MPs decreased the total protein, globulin levels, and butyrylcholinesterase (BChE) activity in blood. In contrast, aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and creatine phospho-kinase (CPK) activities increased in treated-fish with MPs. Glucose, creatinine, cholesterol and triglyceride concentrations in fish exposed to MPs were significantly higher than that of the reference group. Consequently, MPs exposure could disrupt biochemical homeostasis, oxidative stress and alter the expression of genes involved in detoxification.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据