4.7 Article

Collective escape and homoclinic bifurcation phenomena in a nonlinear oscillators chain

出版社

ELSEVIER
DOI: 10.1016/j.cnsns.2022.106690

关键词

Collective escape; Nonlinear chain; On-site potential; Chaos; Melnikov analysis

向作者/读者索取更多资源

The phenomenon of deterministic collective escape of particles from the cubic on-site potential well in the presence of both uniform damping and a periodic force is studied. Analytical techniques and numerical simulation showed that irregular motion induced by the periodic force can lead to strong energy localization on all particles, allowing them to collectively cross the energy barrier.
The phenomenon of deterministic collective escape of particles from the cubic on-site potential well in the presence of both uniform damping and a periodic force is studied. Using analytical techniques such as the separation of time and space as well as the Melnikov theorem, the condition on the periodic force for which a single particle exhibits an irregular motion induced by the homoclinic bifurcation (HB) is derived. Numerical simulation showed that this irregular motion can lead to a strong localization of energy on all the coupled particles allowing them to collectively cross the energy barrier. Moreover, the critical value of the driving force inducing collective escape increases as the potential energy barrier increases and decreases as its frequency increases. Depending on the frequency range of the driving frequency, the collective escape and HB can occur simultaneously; otherwise, the HB prevails. (C) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据