4.6 Article

Bamboo-based hierarchical porous carbon for high-performance supercapacitors: the role of different components

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2022.129575

关键词

Bamboo shavings; Three components; CO2 -catalyzed induction; Hierarchical porous carbon; Supercapacitors

资金

  1. National Natural Science Foundation of China [51974311]
  2. National Key Research and Development Program of China [2019YFC1904302]
  3. Natural Science Foundation of Shandong Province [ZR2020KE044]
  4. Yulin University
  5. Dalian National Laboratory for Clean Energy [2021005]

向作者/读者索取更多资源

This study systematically investigated the hierarchical porous structure of bamboo shavings hierarchical porous carbon (BPC) and the role of cellulose, hemicellulose, and lignin in influencing the pore structure and electrochemical properties of BPC. An efficient three-component separation method of bamboo shavings was proposed. The findings showed that cellulose and hemicellulose mainly provide microporous structure, while lignin provides both mesopores and micropores. The cellulose-derived BPC demonstrated superior cycling stability, and the lignin-derived BPC exhibited the highest specific capacitance and rate performance.
Bamboo shavings hierarchical porous carbon (BPC) possesses excellent prospects for applications in supercapacitors. Herein, the formation mechanism of the hierarchical porous structure of BPC is systematically investigated in an attempt to clarify the role of three components (cellulose, hemicellulose, and lignin) in bamboo shavings on the pore structure and electrochemical properties of BPC. An efficient three-component separation method of bamboo shavings is proposed. We adopt a green activation strategy of CO2-catalyzed induction of small doses of K2CO3 to prepare bamboo shavings and their different components into honeycomb-like hierarchical porous carbons with excellent supercapacitor performance. The findings demonstrate that cellulose and hemicellulose mainly provide the microporous structure for BPC. Lignin provides not only a large number of mesopores but also abundant micropores. Compared with porous carbon derived from other components, ligninderived porous carbon exhibits the optimal specific capacitance (273 Fg- 1 at 0.5 Ag-1) and rate performance (capacity retention of 82.6% at 20 Ag-1) attributed to the largest specific surface area (1985 m2g- 1) and micromesopore volume, indicating that lignin provides an important guarantee for the excellent specific capacitance and rate performance of BPC. The cellulose-derived porous carbon demonstrates superior cycling stability (98.2% capacitance retention over 15,000 cycles) due to its extraordinary electrical conductivity and stable carbon backbone, which means that cellulose is essential to the outstanding cycling stability of the BPC. Furthermore, the existence of hemicellulose also promotes the electrochemical performance of BPC to some extent. With the combined action of lignin, cellulose and hemicellulose, the BPC demonstrates excellent elec-trochemical properties. This work provides a promising ideas for the subsequent adjustment of pore structure and optimization of electrochemical properties of biomass-derived carbon by adjusting the content of each compo-nent in biomass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据