4.6 Article

Selective thermal emission and infrared camouflage based on layered media

期刊

CHINESE JOURNAL OF AERONAUTICS
卷 36, 期 3, 页码 212-219

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cja.2022.08.004

关键词

Heat transfer manipulation; Infrared camouflage; Multilayer media; Selective thermal emission; Thermal illusion; Transfer matrix method

向作者/读者索取更多资源

Infrared camouflage based on artificial thermal metasurfaces has become a hot topic recently. It aims to hide specific objects from infrared detection by eliminating the thermal radiation differences between the object and the background. This article presents a simple and practicable design for infrared stealth using a multilayer film, which offers advantages in scalability, flexible fabrication, and structural simplicity. The multilayer medium consists of a silicon substrate, carbon layer, and zinc sulfide film, and its optical properties are determined using the transfer matrix method. By locally changing the thickness of the coating film, the spatial tunability and continuity in thermal emission are demonstrated, achieving thermal camouflage functionality. Moreover, thickness-engineered multilayer films also demonstrate other functionalities such as thermal illusion and thermal coding.
Infrared camouflage based on artificial thermal metasurfaces has recently attracted significant attention. By eliminating thermal radiation differences between the object and the background, it is possible to hide a given object from infrared detection. Infrared camouflage is an important element that increases the survivability of aircraft and missiles, by reducing target susceptibility to infrared guided threats. Herein, a simple and practicable design is theoretically presented based on a multilayer film for infrared stealth, with distinctive advantages of scalability, flexible fabrication, and structural simplicity. The multilayer medium consists of silicon substrate, carbon layer and zinc sulfide film, the optical properties of which are determined by transfer matrix method. By locally changing the thickness of the coating film, the spatial tunability and continuity in thermal emission are demonstrated. A continuous change of emissive power is further obtained and consequently implemented to achieve thermal camouflage functionality. In addition, other functionalities, like thermal illusion and thermal coding, are demonstrated by thickness-engineered multilayer films.(c) 2022 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据