4.7 Article

Generation of color-controllable room-temperature phosphorescence via luminescent center engineering and in-situ immobilization

期刊

CHINESE CHEMICAL LETTERS
卷 34, 期 7, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cclet.2022.107950

关键词

Carbon dots; Room -temperature phosphorescence; Luminescent center engineering; In -situ immobilization; Anti -counterfeiting; Information security

向作者/读者索取更多资源

A facile strategy was developed to prepare color-controllable room-temperature phosphorescence (RTP) materials through the pyrolysis of a mixture containing 1-(2-hydroxyethyl)urea and boric acid. By controlling the pyrolysis temperatures, the resulting materials exhibited ultralong RTP with tunable emission colors. The study also revealed the formation of multiple luminescent centers, in-situ embedded in the B2O3 matrix, by the pyrolysis process, allowing for color-tunable RTP.
Materials with controllable luminescence colors are highly desirable for numerous promising applications, however, the preparation of such materials, particularly with color-controllable room-temperature phosphorescence (RTP), remains a formidable challenge. In this work, we reported on a facile strategy to prepare color-controllable RTP materials via the pyrolysis of a mixture containing 1-(2-hydroxyethyl)urea (H-urea) and boric acid (BA). By controlling the pyrolysis temperatures, the as-prepared materials exhibited ultralong RTP with emission colors ranging from cyan, green, to yellow. Further studies revealed that multiple luminescent centers formed from H-urea, which were in-situ embedded in the B 2 O 3 matrix (produced from BA) during the pyrolysis process. The contents of the different luminescent centers could be regulated by the pyrolysis temperatures, resulting in color-tunable RTP. Significantly, the luminescent center engineering and in-situ immobilization strategy not only provided a facile method for conveniently preparing color-controllable RTP materials, but also endowed the materials prepared at relatively lower temperatures with color-changeable RTP features under thermal stimulus. Considering their unique properties, the potential applications of the as-obtained materials for advanced anti-counterfeiting and information encryption were preliminarily demonstrated. (c) 2023 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据