4.7 Review

Environmental implications of interaction between humic substances and iron oxide nanoparticles: A review

期刊

CHEMOSPHERE
卷 303, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135172

关键词

Iron oxides; Carbon stabilization; Organic-mineral complex; Persistent organic and inorganic pollutants

向作者/读者索取更多资源

This review focuses on the surface colloidal properties of iron oxides and their reactivity with humic substances, as well as the effects of humic substance adsorption/precipitation on the binding of metalloid and trace elements. Future research directions include investigating the ability of Fe nano-particles to increase Fe bioavailability, improve carbon sequestration, reduce greenhouse gas emissions, and decrease the impact of persistent organic and inorganic pollutants.
Goethite, hematite, ferrihydrite, and other iron oxides bind through various sorption reactions with humic substances (HS) in soils creating nano-, micro-, and macro-aggregates with a specific nature and stability. Long residence times of soil organic matter (SOM) have been attributed to iron-humic substance (Fe-HS) complexes due to physical protection and chemical stabilization at the organic-mineral interface. Humic acids (HA) and fulvic acids (FA) contain many acidic functional groups that interact with Fe oxides through different mechanisms. Due to the numerous interactions between mineral Fe and natural SOM, much research has led into a better identification and definition of HS. In this review, we first focus on the surface colloidal properties of Fe oxides and their reactivity toward HS. These minerals can be efficiently identified by usual techniques, such as XRD, FTIR spectroscopy, XAS, Mo center dot ssbauer, diffuse reflectance spectroscopies (DRS), HRTEM, ATM, NanoSIMS. Second, we present the recent state of art regarding the adsorption/precipitation of HS onto iron mineral surfaces and their effects on binding metalloid and trace elements. Finally, we consider future research directions based on recent scientific literature, with particular focus on the ability of Fe nano-particles to increase Fe bioavailability, improve carbon sequestration, reduce greenhouse gas emissions, and decrease the impact of persistent organic and inorganic pollutants. The methodology in this field has rapidly developed over the last decade. However, new procedures to estimate the nature of Fe-HA bonds will be important contributions in clarifying the role of natural iron oxides in soil for carbon stabilization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据