4.7 Article

Modeling of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction onto Biochar

期刊

CHEMOSPHERE
卷 303, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135065

关键词

Biochar; Sorption efficiency; Predictive model; Deep learning; Remora optimization algorithm; Heavy metals

资金

  1. Institutional Fund Projects [IFPIP-792-611-1442]
  2. Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

向作者/读者索取更多资源

This article presents a novel RODL-HMSEP model based on biochar design, which can be used for predicting the adsorption performance of heavy metals in different biochar properties. By utilizing density clustering and deep belief network techniques, heavy metals can be efficiently removed from wastewater.
Environmental distresses linked to heavy metal (HM) impurity in the water received significant attention among research communities. Recently, advancements in industrial sectors like paper industries, mining, non-ferrous metallurgy, electroplating, mineral paint production, etc. have resulted in massive heavy metals in wastewater. In contrast to organic pollutants, HMs are not recyclable and can be simply engrossed by living organisms. Recently, different solutions have been employed for removing HMs from water and wastewater, like membrane filtration, chemical precipitation, adsorption, ion-exchange, flotation, flocculation, etc. Sorption can be considered one of the efficient solutions for eradicating HMs from waste water. With this motivation, this article concentrates on the design of Remora Optimization with Deep Learning Enabled Heavy Metal Sorption Efficiency Prediction (RODL-HMSEP) model onto Biochar. The proposed RODL-HMSEP technique intends to determine the sorption performance of HMs of various biochar features. Initially, the density based clustering (DBSCAN) technique is applied to simulating the features of metal adsorption data and splitting them into clusters of identical features. Besides, deep belief network (DBN) model was employed for prediction and the efficiency of the DBN model is optimally adjusted with utilize of RO technique. The experimental validation of the RODL

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据