4.7 Article

Deposition of trace metals associated with atmospheric particulate matter: Environmental fate and health risk assessment

期刊

CHEMOSPHERE
卷 303, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135051

关键词

Atmospheric particulates; Pollutant sources; Risk assessment; Trace metals; Transport pathways

资金

  1. National Science Foundation of Sri Lanka [NSF/2014/EB/03]

向作者/读者索取更多资源

This review examines the concentration of trace metals (TMs) in atmospheric deposition and its potential impacts on human and ecosystem health. The concentration of TMs in dry deposition varies with sources, while in wet deposition, it depends on the solubility of TMs. Health risk assessments suggest that ingestion and dermal contact pathways pose potential health risks. Future research should focus on modeling and predicting the fate and transfer of TMs from natural and anthropogenic sources to inform pollution control policies and measures.
Anthropogenic and natural sources influence trace metals (TMs) bound to different sized particulate matter (PM) in dry and wet atmospheric deposition, which can create ecosystem and human health issues in the long run. Limited reviews are available summarizing worldwide concentrations in TMs in atmospheric PMs, their sources and pathways. Simultaneously, quantitative assessment of the potential human and ecosystem health risks imposed by the atmospheric particulate matter has not been adequately reviewed. Addressing this gap, here we review, the concentration of TMs in dry deposition mainly varies with the responsible sources, whereas, in wet deposition, it depends on the solubility of TMs. Other than deposition on impervious surfaces, the TMs incorporated PM can be deposited on biological agents. Health risk assessments show that ingestion and dermal contact pathways are more likely to cause health issues, however, the probability of occurring ingestion and dermal contact pathways is limited. Attention must be paid to the contribution from non-exhaust and exhaust vehicular emissions for TMs in atmospheric deposition, understanding their impact on stormwater management and urban agriculture. Behaviors of TMs in the atmosphere depends on many complex factors including origin, wind patterns, and weather conditions. Therefore, future research needs to be carried to model and predict the fate and transfer of TMs once they are generated through natural and anthropogenic sources. We believe that such research would allow establishing pollution control policies and measures in urban environments which will be critical to reduce the levels of TMs associated with atmospheric deposition in the environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据