4.7 Article

Remediation of cadmium and lead contaminated soils using Fe-OM based materials

期刊

CHEMOSPHERE
卷 307, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135853

关键词

Iron oxide; Immobility; Heavy metal; Lignin; Acid rain

资金

  1. Science and Technology Planning Project of Guangdong Province [2021A0505030045]
  2. Key Research and Development Program of Guangdong Province [2019B110207001]
  3. National Key Research and Development Program [2018YFC1802803]

向作者/读者索取更多资源

Iron oxide-lignin composites (GLS) are effective in immobilizing Cd and Pb in soil and exhibit better stability under acid rain conditions. GLS has a higher adsorption capacity and unique microstructure, transforming mobile and exchangeable Cd/Pb into organic and amorphous Fe oxide-bound fractions.
Iron oxide-lignin composites (GLS) were prepared based on the significant role of Fe-OM in the environmental behaviour of heavy metals and lignin binding with iron oxide preferentially in soil. GLS was applied in Cd/Pb immobilization and the stability under acid rain was investigated. The results show that the iron oxide appeared weakly crystalline or amorphous similar to 2-line ferrihydrite after the addition of lignin. Agglomerates of nanoparticles with higher adsorption capacity were observed for GLS. The mobility factor (MF) of Cd/Pb in the soil decreased rapidly after adding GLS. At the 3% dosage, the MF of Cd and Pb in the soil was decreased by 58.94% and 78.15% respectively, which was approximately 5 times that of goethite (GE). The mobile and exchangeable Cd/Pb were converted to organic, amorphous Fe oxide-bound and residue fractions. Under acid rain conditions, MF continues to decline for the GLS group, increasing the organic and amorphous Fe oxide-bound fractions, while for control group (CK) and GE, the trend was the opposite. Lignin could inhibit iron oxide dissolution and stabilize the combination of Cd/Pb and iron oxides in soil. The better stability performance of GLS for Cd/Pb may be related to the higher adsorption capacity and microstructural difference after iron oxide combined with lignin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据