4.7 Article

Compositional features of Pb in agricultural soils and geochemical associations conditioning Pb contents in plants

期刊

CHEMOSPHERE
卷 306, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135492

关键词

Toxic elements; Lead; Soil geochemistry; Compositional data analysis; Carbonates

资金

  1. Science Committee of MESCS RA

向作者/读者索取更多资源

This study used compositional data analysis and geospatial mapping to investigate the geochemical associations of lead in agricultural soils and its impact on lead contents in plants. The results showed that soil chemical composition was influenced by geological peculiarities and potential sources of chemical elements' release. Different geochemical associations influenced the lead content in plants, with carbonates negatively affecting the availability of lead in plants.
Soil geochemical data is compositional. Hence the studies targeting the potential of accumulation of toxic elements (TE) in plants have to consider the compositional nature of soil chemical environment. In this study, the combined application of compositional data analysis and geospatial mapping was used to investigate Pb geochemical associations in agricultural soils, revealing the link between these associations and Pb contents in plants, as well as identifying source-specific transfer of Pb from soil to plants. The obtained results showed that soil chemical composition was conditioned by the geological peculiarities of the study area and the potential sources of chemical elements' release. Particularly, k-means clustering and CoDa-biplot allows to identify three distinct subsamples and the application of HCA showed that both Pb soil and plants contents were in the same cluster in all subsamples. However, the geochemical association of elements in subsamples I and III suggested that Pb contents in plants were conditioned by the geochemical behaviors of carbonates whereas in subsample II Pb plant contents were presented in a geochemical association (K, Rb, Pb, and Zn) typical for both fertilizers and the potassium feldspar. The transfer factor (TF) for the comparatively higher values is observed for the subsample linked to K, Rb, Pb, and Zn geochemical association. At the same time, the negative influence of carbonates on the Pb availability in the plants was evidenced. The results of this study can serve as a good example for other investigations targeting the role of soil chemical elements compositional features in elements transfer to plant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据