4.7 Article

A novel nanocomposite (g-C3N4/Fe3O4@P2W15V3) with dual function in organic dyes degradation and cysteine sensing

期刊

CHEMOSPHERE
卷 304, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135305

关键词

Composite material; Polyoxometalate; Photocatalytic degradation; Colorimetric sensor

资金

  1. Research Council of Ferdowsi University of Mashhad [27049]

向作者/读者索取更多资源

A novel nanocomposite with high photocatalytic efficiency and colorimetric sensing function for cysteine detection was successfully synthesized in this study, showing significant application prospects.
Among the important needs of human societies is the elimination of environmental pollution and also the construction of high-performance and inexpensive biosensors. In this regard, the construction of multi-functional composites has been considered. A novel magnetic graphite carbon nitride decorated by tri-vanadium substituted Dawson-type heteropolytungstate nanocomposite (C3N4/Fe3O4@P2W15V3) effectively synthesized and characterized by prevalent functional analysis. The prepared nano-catalyst presents bi-functional usage involving photocatalytic removal of dyes (methylene blue, congo red and phenyl red) (around 98%) under visible light radiation and greatly sensitive colorimetric sensing of cysteine in an aqueous media. Moreover, synthesized nano-catalyst successfully recovered five times without any considerable deficiency on its photocatalytic ability. Further, Moreover, we propose a novel method for cysteine detection based on the C3N4/Fe3O4@P2W15V3 nanocomposite. This nanocomposite displayed a privileged catalytic feature for cysteine oxidation to extend a clock reaction of methylene blue as an indicator in the presence of NaBH4 in acidic solution. More importantly, this colorimetric sensing method of cysteine presents an easy, low-cost, selective, and rapid colorimetric assay with a detection limit value of 7.2 mu M in the acceptable linear range of 5-600 mu M.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据