4.7 Article

Computational fluid dynamics simulation study of hypersaline water desalination via membrane distillation: Effect of membrane characteristics and operational parameters

期刊

CHEMOSPHERE
卷 305, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135294

关键词

Computational fluid dynamics (CFD); COMSOL; Membrane distillation (MD); Simulation; Concentration polarisation

向作者/读者索取更多资源

In this study, a comprehensive model was developed using Computational Fluid Dynamics (CFD) to investigate the behavior of a direct contact membrane distillation (DCMD) system under hypersaline feedwater conditions. The results showed that membrane characteristics had a significant impact on the DCMD performance and the determination of optimum operational conditions was necessary.
In this study, a comprehensive model was developed using Computational Fluid Dynamics (CFD), and the behaviour of a direct contact membrane distillation (DCMD) system was investigated at hypersaline feedwater conditions. The effects of various operating parameters including feed and permeate velocities, temperatures and salinities, as well as different membrane characteristics like thickness, porosity, and thermal conductivity were studied. The developed simulation model was also validated using experimental data. The results showed that the membrane conductivity and thickness had a significant impact on the DCMD performance, and the optimum operational condition was necessary to be determined. The results showed that increasing the feedwater salinity from 50 to 200 g/l decreased the membrane flux by up to 33%, while a four times decrease in thermal conductivity of the membrane could lead to an increase in the membrane flux from 11.2 to 32.4 l/m(2).h (LMH). In addition, the optimal membrane thickness was found to increase with salinity, reaching >120 mu m for treatment of 22 wt% NaCl feedwater solution. However, the flux declined from >32 LMH to <13 LMH upon the increase in feedwater salinity (up to 22 wt% NaCl solution). It is also shown that a thinner membrane performed better for desalination of low salinity feedwater, while the thicker one produces higher separation performance and thermal efficiency for hypersaline brine desalination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据