4.7 Article

Modified bio-electrocoagulation system to treat the municipal wastewater for irrigation purposes

期刊

CHEMOSPHERE
卷 307, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135746

关键词

Municipal wastewater; Bio-electrocoagulation; Water quality; Biofilters; Sand filter

资金

  1. Distinguished Scientist Fellowship Program (DSFP) at King Saud University, Riyadh, Saudi Arabia

向作者/读者索取更多资源

A modified biological-integrated electrocoagulation method was explored to treat municipal wastewater for irrigation purposes. The results showed that this method could effectively remove various contaminants from the wastewater under suitable operating conditions, and it had lower operating costs compared with the standard specifications for agricultural irrigation water.
A modified biological-integrated electrocoagulation method was explored to treat municipal wastewater (MWW) for irrigation purposes. To use treated wastewater for irrigation purposes a wide range of contaminants removal was focused on in this study (turbidity, hardness, conductivity, TDS, TSS, chloride, Ammonia nitrogen, BOD, COD, and total coliform). Raw municipal wastewater (RMWW) was treated in a modified Bio-Electrocoagulation (BEC) cell. The cell was operated in a continuous flow mode and consisted of an electrocoagulation stage using aluminum (Al) electrodes followed by a bioremediation stage using a fixed bio-filter (BF), the design of the cell was further modified by the addition of a sand filter (SF). The effect of several parameters such as applied voltage (22, 26, and 30 V), inlet flow rate (1, 3, and 5 Lh(-1)), and initial pH (pH 3, 5, 7, 7.4, and 9) was investigated to determine the optimum operating conditions for selected responses. The most effective operating conditions for the BEC were investigated for the different irrigation water quality (WQ) indicators. It was observed that pH 7.4 and 26 V provide maximum removal efficiency of contaminants at the flow rate of 1 Lh(-1). A fixed film BF plays a positive role to improve the degradation of contaminants after the EC unit up to 4% of NH3-N, 9.3% of BOD, and 7.8% of COD. In addition, using the SF improved the turbidity removal to 42.6%. The WQ specifications of the treated MWW using the BEC cell were compared with the standard specifications for restricted and unrestricted agricultural irrigation water. The overall operating cost of MWW treatment for irrigation purposes by using a modified bio-integrated electrocoagulation method was 0.76 $m(-3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据