4.7 Article

Highly adsorptive protein inorganic nanohybrid of Moringa seeds protein and rice husk nanosilica for effective adsorption of pharmaceutical contaminants

期刊

CHEMOSPHERE
卷 307, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2022.135856

关键词

Moringa oleifera protein; Adsorption; Nanosilica; Levofloxacin; Diclofenac

资金

  1. Thi Ngan Vu
  2. [VINIF.2021. ThS.27]

向作者/读者索取更多资源

This study investigates the adsorption characteristics and mechanisms of Moringa seeds protein on nanosilica rice husk and their applications in removing pharmaceutical residues in water. The results show that the surface charge change and surface modification of nanosilica play important roles in the protein adsorption process. The use of protein functionalized nanosilica greatly improves the removal of pharmaceutical residues and exhibits high adsorption capacity.
The present study aims to investigate adsorption characteristics and mechanisms of Moringa (MO) seeds protein on nanosilica rice husk and their applications in removal of pharmaceutical residues including the fluoroquinolone antibiotic levofloxacin (LFX) and the nonsteroidal anti-inflammatory drug diclofenac (DCF) in aquatic environment. Molecular weight of MO protein was determined by gel-permeation chromatography (GPC) method while its amino acids were quantified by high performance liquid chromatography (HPLC). The number-(M-n) and weight-average molecular weights (M-w) of MO protein were 1.53 x 10(4) and 1.61 x 10(4) g/mol, respectively. Different effective conditions on adsorption protein on nanosilica including contact time, pH, adsorbent dosage, and ionic strength were systematically optimized and found to be 180 min, 10, 10 mg/mL and 1 mM KCl, respectively. The surface charge change by zeta potential, surface modification by Fourier-transform infrared spectroscopy (FT-IR) and adsorption isotherms demonstrated that protein adsorption on nanosilica was governed by both electrostatic and non-electrostatic interactions. Application of protein functionalized nanosilica (ProFNS) in LFX and DCF removal were also thoroughly studied. The selected conditions for LFX and DCF removal using ProFNS were 1 mM KCl for both LFX and DCF; pH 8 and pH 6; contact time 90 and 120 min, and adsorption dosage 10 and 5 mg/ml for LFX and DCF, respectively. Adsorption isotherms of protein on nanosilica as well as LFX and DCF onto ProFNS at different ionic strengths were reasonably fitted by the two-step model while a pseudo-second-order model could fit adsorption kinetic well. The removal of LFX and DCF using ProFNS significantly increased from 51.51% to 87.35%, and 7.97%-50.02%, respectively. High adsorption capacities of 75.75 mg/g for LFX and 59.52 mg/g for DCF, indicate that ProFNS is a great performance for pharmaceutical residues removal in water environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据