4.6 Review

Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges

期刊

CHEMISTRY-AN ASIAN JOURNAL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asia.202200794

关键词

Ionic liquids; Ionogel electrolytes; Lithium-ion batteries; Quasi-solid-state electrolytes; Safety

资金

  1. National Natural Science Foundation of China [51972132, 52272206, 52002141]
  2. Program for HUST Academic Frontier Youth Team [2016QYTD04]

向作者/读者索取更多资源

This article discusses the importance of ionogel electrolytes for lithium-ion batteries and their applications in improving electrolyte performance. Through the preparation of quasi-solid-state gel electrolytes and different frameworks, the performance of lithium-ion batteries can be effectively improved.
Incidents in the use of lithium-ion batteries are usually caused by the malfunction of flammable organic liquid electrolytes with poor thermal stability. Therefore, the development of noncombustible electrolytes is regarded as one of the most effective means to prevent the safety hazards of lithium-ion batteries. Ionic liquids have attracted much interest recently, mainly due to their high ionic conductivity, low volatility, and incombustibility. The application of ionic liquids to the preparation of quasi-solid-state gel electrolytes combines the advantages of ionic liquids and avoids the risks of organic liquid electrolytes. Therefore, the solid-state ionogels have been considered as a promising alternative electrolyte system, especially for the much-desired energy storage devices with higher energy density and flexibility. This review focuses on the recent progress of ionogel electrolytes for lithium-ion batteries. The preparation strategies for ionogel electrolytes based on different frameworks, namely inorganic matrix, organic matrix, and organic-inorganic hybrid matrix, are discussed. Subsequently, efforts to improve the properties of the ionogel electrolytes, including the ionic conductivity, mechanical properties, and lithium-ion transfer number, are summarized. Besides, the applications of ionogel electrolytes in high-voltage lithium-ion batteries and lithium metal batteries as well as the batteries under extreme environments are outlined. Finally, the perspectives on studying and improving the performances of ionogel electrolytes for advanced lithium-ion batteries are provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据