4.8 Article

Tradeoff between the Ion Exchange-Induced Residual Stress and Ion Transport in Solid Electrolytes

期刊

CHEMISTRY OF MATERIALS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.2c01806

关键词

-

资金

  1. National Science Foundation [DMR-2054441, 1832829]
  2. Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. DOE [DE-AC03-76SF00098]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1832829] Funding Source: National Science Foundation

向作者/读者索取更多资源

The commercialization of solid-state lithium metal anode batteries is limited by the rapid growth of lithium filaments. By introducing residual compressive stresses through potassium ion exchange, it is possible to improve the fracture toughness of the solid electrolyte. However, excessive potassium incorporation can hinder lithium-ion diffusion and decrease the performance of the electrolyte. Through multiscale modeling, it is predicted that exchanging 3.4% potassium ions in Li7La3Zr2O12 solid electrolyte can significantly increase fracture strength while reducing diffusivity.
Rapid filament growth of lithium is limiting the commercialization of solid-state lithium metal anode batteries. Recent work demonstrated that lithium filaments grow into pre-existing or nascent cracks in the solid electrolyte, suggesting that increasing the fracture toughness of the solid electrolytes will inhibit filament penetration. It has been suggested that introducing residual compressive stresses at the surface of the solid electrolyte can provide this additional fracture toughness. One of the ways to induce these residual compressive stresses is by exchanging lithium ions (Li+) with larger isovalent ions such as potassium (K+). On the other hand, incorporation of too much potassium can alter the lithium-ion diffusion pathway and lower the diffusivity, thus limiting the performance of the solid-state electrolyte. Using multiscale modeling methods, we optimize this tradeoff and predict that exchanging 3.4% potassium ions up to a depth twice the grain sizes in Li7La3Zr2O12 solid electrolyte can induce a maximum residual compressive stress of around 1.1 GPa, corresponding to an increase in fracture strength by & SIM;8 times, while lowering the diffusivity in the ion-exchanged region by a factor of 5 at room temperature. The reduction of lithium diffusivity is due to K+-induced stress and (mainly) blockage of lithium ion pathways in the shallow ion-exchanged layer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据