4.7 Article

An updated lymphohematopoietic and bladder cancers risk evaluation for occupational and environmental exposures to 1,3-butadiene

期刊

CHEMICO-BIOLOGICAL INTERACTIONS
卷 366, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.cbi.2022.110077

关键词

13-Butadiene; Leukemia; Epidemiology; Exposure-response modeling; Cox proportional hazards regression model; Styrene-butadiene-rubber industry workers

资金

  1. North American synthetic Styrene-Butadiene Rubber Industry
  2. American Chemistry Council

向作者/读者索取更多资源

This article introduces the evaluation study of 1,3-butadiene conducted by the U.S. Environmental Protection Agency, develops a new exposure-response model based on the SBR study, and analyzes it. The results show that the cancer potency of 1,3-butadiene is much lower compared to previous estimates.
EPA designated 1,3-butadiene (BD) as a high priority chemical in December 2019 and is presently performing an evaluation under the Toxic Substances Control Act (TSCA). EPA's cancer dose-response assessment for BD was published in 2002 and was primarily based on a study on workers exposed to BD in the North American synthetic Styrene-Butadiene Rubber (SBR) Industry developed by the University of Alabama at Birmingham (UAB). EPA relied upon a Poisson regression of leukemia mortality data from this cohort (hereinafter referred to as the SBR study) to estimate the cancer potency of BD. At the time, the SBR cohort included more than 15,000 male workers that were followed up through 1991. The SBR cohort has undergone multiple updates over the past two decades. Most recently, Sathiakumar et al. (2021a, b) published an update, with 18 more years of follow up in addition to approximately 5,000 female workers and updated exposure concentration estimates. Recent EPA assessments (e.g., for ethylene oxide, USEPA 2016) based on epidemiological studies use Cox proportional hazards models because they offer better control of the effect of age in cancer development and are less restrictive than Poisson regression models. Here, we develop exposure-response models using standard Cox proportional hazards regression. We explore the relationship between six endpoints (all leukemia, lymphoid leukemia, myeloid leukemia, multiple myeloma, non-Hodgkin's lymphoma, and bladder cancer) and exposures to BD using the most recent exposure metrics and the most recent update of the SBR study. After adjusting for statistically significant covariates, an upper 95% confidence level on the cancer potency based on leukemia derived herein is 0.000086 per ppm, which is approximately 1,000-fold less than EPA's (2002) estimate of 0.08 per ppm and about 10-fold less than TCEQ's (2008) estimate of 0.0011 per ppm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据