4.5 Article

Chemoproteomic Approach for the Quantitative Identification of Arsenic-Binding Proteins

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 35, 期 11, 页码 2145-2151

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrestox.2c00244

关键词

-

资金

  1. National Institutes of Health
  2. [R35 ES031707]

向作者/读者索取更多资源

This study developed a chemoproteomic strategy to identify proteins binding to trivalent arsenic. The results suggest that trivalent arsenic may perturb protein homeostasis by directly binding to molecular chaperones.
Arsenic is a widespread environmental contaminant, and long-term exposure to arsenic in drinking water is known to be associated with the development of many human diseases. Identification of arsenic-binding proteins is important for understanding the mechanisms underlying the toxic effects of arsenic species. Here, we developed a chemoproteomic strategy, relying on the use of a biotin-As(III) probe, stable isotope labeling by amino acids in cell culture, and liquid chromatography-tandem mass spectrometry analysis, to identify quantitatively As(III)-binding proteins. Over 400 proteins were enriched from the lysate of HEK293T cells with streptavidin beads immobilized with the biotin-As(III) probe. Competitive labeling experiments in the presence or absence of p-aminophenylarsenoxide (PAPAO) revealed 51 candidate As(III)-binding proteins, including several molecular chaperones and cochaperones, that is, HSPA4, HSPA4L, HSPH1, HOP1, FKBP51, and FKBP52. We also validated, by employing western blot analysis, the ability of HSPA4, a member of heat shock protein 70 (HSP70) family, in binding with PAPAO and sodium arsenite in vitro. Together, our work led to the identification of a number of new As(III)-interaction proteins, and our results suggest that As(III) may perturb proteostasis partly through binding directly with molecular chaperones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据