4.7 Article

Multiplying the efficiency of red thermally activated delayed fluorescence emitter by introducing intramolecular hydrogen bond

期刊

CHEMICAL ENGINEERING JOURNAL
卷 448, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2022.137717

关键词

Red organic light-emitting diodes; Thermally activated delayed fluorescence; Intramolecular hydrogen bond; Radiative process; Non-radiative decay

资金

  1. National Natural Science Foundation of China [51773029, 52073040, 51821002]
  2. Inter-national Cooperation and Exchange Project of Science and Technology Department of Sichuan Province [2019YFH0057]
  3. Collaborative Innovation Center of Suzhou Nano Science Technology

向作者/读者索取更多资源

In this study, three new thermally activated delayed fluorescence (TADF) emitters were developed with improved molecular rigidity and enhanced fluorescence process by forming appropriate intramolecular hydrogen bond. These emitters showed significantly improved radiative rate and reduced non-radiative decay rate, leading to multiplied external quantum efficiency (EQE) in red organic light-emitting diodes (OLEDs).
As one of the three primary colors, red organic light-emitting diodes (OLEDs) are indispensable in practical applications. However, red emitters are generally subject to severe non-radiative exciton loss due to their narrow energy gap. In this work, three new thermally activated delayed fluorescence (TADF) emitters were developed, namely 4-(acenaphtho[1,2-b]quinoxalin-9-yl)-N,N-diphenylaniline (TPA-AP), 4-(acenaphtho[1,2-b]pyrido[2,3e]pyrazin-10-yl)-N,N-diphenylaniline (TPA-APy), and 4-(acenaphtho[1,2-b]pyrazino[2,3-e]pyrazin-9-yl)-N,Ndiphenylaniline (TPA-APm), employing a series of finely modified acenaphtho[1,2-b]quinoxaline (AP) derivatives as acceptor units. Among three TADF emitters, an intramolecular hydrogen bond is formed between the donor (D) and acceptor (A) units in TPA-APm. Consequently, the overlap of the frontier molecular orbitals (FMOs) of TPA-APm can increase appropriately, and the fluorescence radiative rate (kF) of TPA-APm is nearly twofold than that of TPA-AP and TPA-APy. Furthermore, the non-radiative decay rate (knr) of TPA-APm is less than that of TPA-AP and TPA-APy by an order of magnitude, which is attributed to the improved molecular rigidity caused by intramolecular hydrogen bond. As a result, TPA-APm-based OLEDs achieved a multiplied external quantum efficiency (EQE) of 21.1% with the electroluminescence peak at 590 nm, comparing to only 7.0% and 11.5% for the TPA-AP-based and TPA-APy-based devices, respectively. These results demonstrate appropriate intramolecular hydrogen bond can suppress the influence of non-radiative decay by simultaneously enhancing molecular rigidity and facilitating the fluorescence process, and have great potential in the design of efficient red TADF emitters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据