4.7 Article

Determination of fracture toughness of boride layers grown on Co1.21Cr1.82Fe1.44Mn1.32Ni1.12Al0.08B0.01 high entropy alloy by nanoindentation

期刊

CERAMICS INTERNATIONAL
卷 48, 期 24, 页码 36410-36424

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2022.08.201

关键词

High entropy alloys; Boriding; Nanoindentation; Fracture toughness

向作者/读者索取更多资源

Multiphase boride layers were formed on the surface of a high entropy alloy, and their mechanical properties were determined. The presence of chromium, iron, and cobalt borides had a critical influence on the mechanical properties.
Multiphase boride layers consisting of (CoFe)2B, (Fe0.4Mn0.6)B, Cr2Ni3B6 and (Cr0.4Mn0.6)B were formed on the surface of Co1.21Cr1.82Fe1.44Mn1.32Ni1.12Al0.08B0.01 high entropy alloy by powder-pack boronizing at 900 degrees C, 950 degrees C and 1000 degrees C for 4 h. The nanohardness (H), modulus of elasticity (E) and fracture toughness (KC) of the multiphase boride layers were determined based on the load-displacement (P-h) curves obtained in the nanoindentation tests. Three distinct regions were identified on the cross-sections of the produced layers: an outer layer consisting of MeB-type borides, an inner layer consisting of Me2B-type borides and the transition zone. The microstructural aspects of the layers were investigated using scanning electron microscopy, energy-dispersive Xray spectroscopy, and X-ray diffraction. Detailed analysis of the influence of the chemical composition on hardness, elastic modulus and fracture toughness in the three regions indicated that the most critical factor influencing the mechanical properties was the presence of chromium, iron and cobalt borides in the microstructure. Especially the formation of chromium borides reduced the fracture toughness of the transition zone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据