4.7 Article

Development of macroporous eggshell derived apatite bone cement for non-load bearing defect repair in orthopedics

期刊

CERAMICS INTERNATIONAL
卷 48, 期 24, 页码 37000-37012

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ceramint.2022.08.270

关键词

Apatite bone cement; Eggshell derived; Injectable; Porogen; Macroporous; Non-load bearing

向作者/读者索取更多资源

A novel injectable macroporous apatite bone cement derived from eggshell was developed using gelatin and chitosan as a biopolymeric solution, along with disodium hydrogen phosphate and acetic acid. The cement exhibited good injectability, stability, and degradation properties, and showed potential for repairing low or non-load bearing defects in orthopaedic applications.
A novel and easy approach was attempted to developed a ready to use injectable macroporous apatite bone cement derived from eggshell under physiological conditions where, the solid phase contains hydroxyapatite and eggshell derived beta-tricalcium phosphate and the liquid phase is the biopolymeric solution (gelatin and chitosan for improving injectability) with disodium hydrogen phosphate (as binding accelerator) in diluted acetic acid. Also, polysorbate as liquid porogen is incorporated in liquid phase (to enhance cement porosity) and it was compared with the cements containing mannitol as solid porogen. All are mixed in an optimized composition to get desired bone cement. The so-formed cements set within clinically acceptable setting time (<= 20 min) and are good injectable (>75%), along with stability at physiological pH (similar to 7.3-7.4). The apatite phased bone cement formed when the after-set cement immersed in phosphate buffer solution (PBS) and incubated for 7 days at physiological conditions, confirmed by X-ray diffraction and Fourier transform Infrared spectroscopy analysis. The cements hold acceptable compressive strength (2.5-4 MPa), within the range of trabecular bone and are also degradable (19-25%) in PBS and simulated body fluid within 70 days. The average pore size of the eggshell derived apatite bone cements (ESDAPCs) falls in between 50 and 250 mu m with interconnectivity, confirmed by scanning electron microscopy and micro-CT analysis verified its macroporous nature. The viability and alkaline phosphatase activity of MG63 cells incubated with the ESDAPCs was found to be significantly higher after 3rd and 14th day when compared to their respective controls. Also, the MG63 cells were fully grown over the surface of the ESDAPCs with increased proliferation and extended filopodia. In conclusion, the developed ESDAPC has the ability to become a potential material for repairing low or non-load bearing defects in orthopaedic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据