4.7 Article

Enhancing the properties of foam concrete 3D printing using porous aggregates

期刊

CEMENT & CONCRETE COMPOSITES
卷 133, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cemconcomp.2022.104687

关键词

Foam concrete; 3D printing; Rheological properties; Expanded perlite; Porosity; Compressive strength

资金

  1. Swinburne University of Technology
  2. Australian Research Council [DE190100646, DP170103521]

向作者/读者索取更多资源

This study investigates the combination of lightweight aggregates and premade foam in foam concrete to achieve a density below 1000 kg/m3 for 3D printing applications. The introduction of combined lightweight aggregate and foam significantly improves the fresh and hardened properties of lightweight concrete. The compressive strength of 3D printed specimens containing lightweight aggregates was significantly higher compared to those without, and the pore size distribution was finer and more regular.
The lightweight concrete (density <1000 kg/m3) is generally attained by introducing a large amount of air voids into fresh concrete for making so-called foam concrete. Such foam concrete is quite challenging in 3D concrete printing due to the high flowability of fresh mixes affecting the printability and foam stability during extrusion process. To overcome these limitations, this study investigates a combination of lightweight aggregates and premade foam in foam concrete to attain a density below 1000 kg/m3 for 3D printing applications. The expanded perlite (EP) aggregate was used as a replacement for fine sand that substantially reduced the foam content in the mix. The effect of EP on the fresh state properties such as rheology and printability as well as hardened properties including, mechanical properties, porosity and pore size distribution were investigated. It was demonstrated that the introduction of combined lightweight aggregate and foam has significantly improved the fresh and hardened properties of produced lightweight concrete. For instance, fresh foam concrete containing EP aggregate displayed high yield strength and apparent viscosity compared to the foam concrete without EP at similar densities. The compressive strength of 3D printed specimens containing EP was determined as 12.95 MPa, 15.5 MPa and 10.6 MPa in the perpendicular, longitudinal, and lateral directions respectively, compared to 5.5 MPa, 8.4 MPa and 4.2 MPa for the sand group at the similar density. Moreover, fine and regular pore size distribution was observed for 3D printed foam concrete with EP aggregate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据