4.7 Article

Insight into the carbonaceous fraction of three cultural layers of different age from the area of Verona (NE Italy)

期刊

CATENA
卷 217, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.catena.2022.106453

关键词

Cultural layers; Dark Earth; Carbonaceous fraction; Raman Spectroscopy; Radiocarbon dating

资金

  1. Ca'Foscari University of Venice

向作者/读者索取更多资源

Cultural layers are deposits resulting from human settlement and activity on natural soil in the past. This study examines three archaeological sites in Verona, Italy, to understand the anthropogenic influence on the development of urban Dark Earth (UDE) layers. The research analyzes the geochemistry, carbonaceous materials, and charred material to characterize the UDE layers and investigate the relationship between different variables. The results show that UDE layers formation is related to various human activities, including metal tool and ceramic manufacturing.
Cultural layers are deposits resulting from settlement and human activity on natural soil in the past. Materials from past domestic activities that become buried into the soil can be used to reconstruct human impact in a specific area in the past. For instance, humans have used fire for millennia, and charcoal in soils and sediments is applied as evidence of anthropic activity. In this context, assessing the abundance and degradation level of charcoal fragments can clarify anthropic activities in cultural deposits. In European towns, cultural layers with similar characteristics, have been defined as urban Dark Earth (UDE) but their age, formation and composition often differ significantly across sites.This study examined three archaeological sites in Verona, Italy, where UDE layers with similar characteristics have been identified. The primary aim of this research is to understand the anthropogenic influence on the development of UDE layers, by characterizing their geochemistry and the carbonaceous materials. To pursue this goal, we provide a micromorphological description of the sites, evaluate UDE features and the abundance of charred material and characterize the amorphous/crystalline degree through jr-Raman spectroscopy. Bulk material was described in terms of amounts of total organic carbon (TOC), recalcitrant organic carbon (ROC), total inorganic carbon (TIC), and trace element concentration. Radiocarbon dating of charred and humin fractions was performed to clarify the dynamics underlying UDE origin. We investigate the relationship between the different variables analyzed in the UDE layers at each site. Results show that a diverse array of human activities including metal tool and/or ceramic manufacturing were related to the formation of UDE layers. The investigation of carbonaceous fractions highlight differences in soil organic carbon and charred material, both of which are correlated with human influence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据