4.6 Article

Sex differences in brain homotopic co-activations: a meta-analytic study

期刊

BRAIN STRUCTURE & FUNCTION
卷 227, 期 8, 页码 2839-2855

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s00429-022-02572-0

关键词

Homotopic connectivity; Activation likelihood estimation; Coordinate-based meta-analysis; Hemispheric integration; Lateralization

资金

  1. Universita degli Studi di Torino within the CRUI-CARE Agreement

向作者/读者索取更多资源

This study investigated homotopic connectivity in the brains of women and men. The results revealed that females exhibit stronger interhemispheric co-activation, suggesting that the female brain is less lateralized and more integrated than that of males. In contrast, males show less intense but more extensive co-activation, with some local differences appearing. This argues for a multidimensional view of sex brain differences and suggests that more complex models should be used to approach the issue.
An element of great interest in functional connectivity is 'homotopic connectivity' (HC), namely the connectivity between two mirrored areas of the two hemispheres, mainly mediated by the fibers of the corpus callosum. Despite a long tradition of studying sexual dimorphism in the human brain, to our knowledge only one study has addressed the influence of sex on HC. We investigated the issue of homotopic co-activations in women and men using a coordinate-based meta-analytic method and data from the BrainMap database. A first unexpected observation was that the database was affected by a sex bias: women-only groups are investigated less often than men-only ones, and they are more often studied in certain domains such as emotion compared to men, and less in cognition. Implementing a series of sampling procedures to equalize the size and proportion of the datasets, our results indicated that females exhibit stronger interhemispheric co-activation than males, suggesting that the female brain is less lateralized and more integrated than that of males. In addition, males appear to show less intense but more extensive co-activation than females. Some local differences also appeared. In particular, it appears that primary motor and perceptual areas are more co-activated in males, in contrast to the opposite trend in the rest of the brain. This argues for a multidimensional view of sex brain differences and suggests that the issue should be approached with more complex models than previously thought.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据