4.7 Article

Transcriptome analysis reveals the roles of phytohormone signaling in tea plant (Camellia sinensis L.) flower development

期刊

BMC PLANT BIOLOGY
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12870-022-03853-w

关键词

Camellia sinensis; Flower development; Transcriptome (RNA-seq); Phytohormone

向作者/读者索取更多资源

The study identified a 92-gene core transcriptome of Camellia sinensis flower development by analyzing three different developmental stages of three different cultivars. Results revealed the involvement of endogenous hormone changes and gene expression related to synthesis and signal transduction during flower development. The study also showed that key genes such as MYC, FT, SOC1, and LFY play important roles in regulating the flowering process of C. sinensis through a complex hormone regulation network.
Background Tea plant (Camellia sinensis (L.) O. Kuntze) is an important economic tea crop, but flowering will consume a lot of nutrients of C. sinensis, which will seriously affect the nutritional growth of C. sinensis. However, there are few studies on the development mechanism of C. sinensis flower, and most studies focus on a single C. sinensis cultivar. Results Here, we identified a 92-genes' C. sinensis flower development core transcriptome from the transcriptome of three C. sinensis cultivars ('BaiYe1', 'HuangJinYa' and 'SuChaZao') in three developmental stages (bud stage, white bud stage and blooming stage). In addition, we also reveal the changes in endogenous hormone contents and the expression of genes related to synthesis and signal transduction during the development of C. sinensis flower. The results showed that most genes of the core transcriptome were involved in circadian rhythm and autonomous pathways. Moreover, there were only a few flowering time integrators, only 1 HD3A, 1 SOC1 and 1 LFY, and SOC1 played a dominant role in the development of C. sinensis flower. Furthermore, we screened out 217 differentially expressed genes related to plant hormone synthesis and 199 differentially expressed genes related to plant hormone signal transduction in C. sinensis flower development stage. Conclusions By constructing a complex hormone regulation network of C. sinensis flowering, we speculate that MYC, FT, SOC1 and LFY play key roles in the process of endogenous hormones regulating C. sinensis flowering development. The results of this study can a provide reference for the further study of C. sinensis flowering mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据