4.6 Article

Fruit bagging reduces the postharvest decay and alters the diversity of fruit surface fungal community in 'Yali' pear

期刊

BMC MICROBIOLOGY
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12866-022-02653-4

关键词

Postharvest decay; Fruit bagging; Fungal community; 'Yali' pear; Pichia

资金

  1. Agriculture Science and Technology Innovation Project of Hebei Academy of Agriculture and Forestry Sciences (HAAFS) [2019-2-1]
  2. Hebei Postdoctoral Science Foundation [B2021003034]
  3. Talents Construction Project of Science and Technology Innovation of HAAFS [C21R1303]

向作者/读者索取更多资源

The study found that fruit bagging significantly reduced postharvest fruit decay and respiration rate of 'Yali' pears. Significant differences were observed in fungal composition between bagging and non-bagging pears after storage for 0 or 15 days. Fruit bagging maintained the diversity of fungi on the fruit surface, increased the abundance of non-pathogenic fungi, and reduced the abundance of pathogenic fungi, ultimately decreasing postharvest decay and extending the storage period of 'Yali' pears.
Background Fruit bagging is an effective technique for fruit protection in the orchard management. Bagging can create a micro-environment for fruit growth and affect fruit quality during storage, in which the diversity of microorganisms may play an important role. Therefore, various methods including biochemistry, analytical chemistry, and bioinformatics methods were used to reveal the influences of fruit bagging on postharvest fruit quality, physiological characters, decay and surface fungal community of 'Yali' pear fruit were investigated in this study. Results Fruit bagging significantly decreased the postharvest decay after 15 days of ambient storage. There were no significant differences in fruit firmness, titratable acid and ethylene production rate between the fruit-bagging and non-bagging group after 15 days of storage, while the soluble solids contents (SSC) and respiration rate in non-bagging fruit was significantly higher than that in fruit-bagging after 15 days of storage. Furthermore, the surface microbes of pear were collected and determined by the new generation sequencing technology. The alpha diversity of fungi in non-bagging fruit decreased significantly after 15 days of storage, while there were no significant changes in bagging fruit. Ascomycota and Basidiomycota were the two major phyla detected in the bagging fruit, and the dominant fungal genera were Alternaria (23.7%), Mycosphaerella (17.25%), Vishniacozyma (16.14%), and Aureobasidium (10.51%) after 15 days of storage. For the non-bagging pear, Ascomycota was the only phylum detected, and the dominant genera was Pichia (83.32%) after 15 days of storage. The abundance of Pichia may be regarded as the biomarker to indicate the degree of fruit decay. Conclusions This study showed that fruit bagging could significantly reduce postharvest fruit decay and respiration rate of 'Yali' pear. Significant differences were found in fungal composition between bagging and non-bagging pear after storage for 0 or 15 days. Fruit bagging maintained the diversity of fungi on the fruit surface, increased the abundance of non-pathogenic fungi, and even antagonistic fungi such as Aureobasidium, Vishniacozyma, and Mycosphaerella. A reduction in the abundance of pathogenic fungi and incidence of postharvest decay during the storage of 'Yali' pear were also recorded. In conclusion, fruit-bagging changed the fungal diversity on fruit surface of 'Yali' pear, which had significant effect on reducing postharvest fruit decay, and thus prolong the storage period of 'Yali' pears. The future thrust of this study will focus on the isolation of fungi or bacteria from pear fruit surface and identify their roles in causing fruit decay and changing fruit quality during storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据