4.4 Article

Computational Study of Three-Dimensional Stagnation Point Nanofluid Bioconvection Flow on a Moving Surface With Anisotropic Slip and Thermal Jump Effect

出版社

ASME
DOI: 10.1115/1.4033581

关键词

three-dimensional gyrotactic bio-convection; anisotropic slip; microrganisms; thermal jump; zero mass flux

资金

  1. Universiti Sains Malaysia, RU [1001/PMATHS/811252]

向作者/读者索取更多资源

The effects of anisotropic slip and thermal jump on the three-dimensional stagnation point flow of nanofluid containing microorganisms from a moving surface have been investigated numerically. Anisotropic slip takes place on geometrically striated surfaces and superhydrophobic strips. Zero mass flux of nanoparticles at the surface is applied to achieve practically applicable results. Using appropriate similarity transformations, the transport equations are reduced to a system of nonlinear ordinary differential equations with coupled boundary conditions. Numerical solutions are reported by means of very efficient numerical method provided by the symbolic code Maple. The influences of the emerging parameters on the dimensionless velocity, temperature, nanoparticle volumetric fraction, density of motile microorganism profiles, as well as the local skin friction coefficient, the local Nusselt number, and the local density of the motile microorganisms are displayed graphically and illustrated in detail. The computations demonstrate that the skin friction along the x-axis is enhanced with the velocity slip parameter along the y-axis. The converse response is observed for the dimensionless skin friction along the y-axis. The heat transfer rate is increased with greater velocity slip effects but depressed with the thermal slip parameter. The local Nusselt number is increased with Prandtl number and decreased with the thermophoresis parameter. The local density for motile microorganisms is enhanced with velocity slip parameters and depressed with the bioconvection Lewis number, thermophoresis, and Peclet number. Numerical results are validated where possible with published results and excellent correlation is achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据